headline news

Popular Posts

Bilangan Biner




Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.

Perhitungan

Desimal Biner (8 bit )
0 0000 0000
1 0000 0001
2 0000 0010
3 0000 0011
4 0000 0100
5 0000 0101
6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111
16 0001 0000


Jenis pohon biner

Definisi dalam teori graf

Kombinatorik

Metode untuk menyimpan pohon biner

Pohon biner dapat dikonstruksi dari bahasa pemrograman primitif dalam berbagai cara. Dalam bahasa yang menggunakan records dan referensi, pohon biner secara khas dikonstruksi dengan mengambil sebuah struktur simpul pohon yang memuat beberapa data dan referensi ke anak kiri dan anak kanan. Kadang-kadang itu juga memuat sebuah referensi ke ayahnya yang khas. Jika sebuah simpul mempunyai kurang dari dua anak, beberapa penunjuk anak dapat diatur kedalam nilai nol khusus, atau ke sebuah simpul sentinel.
Pohon biner dapat juga disimpan sebagai struktur data implisit dalam array, dan jika pohon tersebut merupakan sebuah pohon biner lengkap, metode ini tidak boros tempat. Dalam penyusunan yang rapat ini, jika sebuah simpul memiliki indeks i, anaknya dapat ditemukan pada indeks ke-2i+1 dan 2i+2, meskipun ayahnya (jika ada) ditemukan pada indeks lantai((i-1)/2) (asumsikan akarnya memiliki indeks kosong). Metode ini menguntungkan dari banyak penyimpanan yang rapat dan memiliki referensi lokal yang lebih baik, tersitimewa selama sebuah preorder traversal. Bagaimanapun juga, ini terlalu mahal untuk perkembangannya dan boros tempat sebanding dengan 2h - n untuk sebuah pohon dengan tinggi h dengan nsimpul.
Sebuah pohon biner lengkap kecil disimpan dalam array
Dalam bahasa dengan tagged union seperti ML, sebuah simpul pohon seringkali sebuah tagged union dari dua jenis simpul, dimana yang satu merupakan data dari 3-tupel, anak kiri, dan anak kanan, dan yang lain dimana sebuah daun, yang tidak memuat data dan fungsi seperti nilai nol dalam bahasa dengan penunjuk (pointers)

Metode iterasi pohon biner

Pre-order, in-order, dan post-order traversal

Depth-first order

Breadth-first order

Penyandian

Penyandian ringkas

Sebuah struktur data ringkas adalah sesuatu yang mengambil tempat minimum mutlak yang mungkin, yang berdiri sebagai teori informasi bawah. Jumlah dari pohon biner yang berbeda pada n simpul adalah \mathrm{C}_{n}, Bilangan Catalan ke-n (asumsikan kita melihat pohon dengan struktur yang identik sebagai sebuah kesamaan). Untuk besarnya n, ini berkisar kira-kira 4^{n}; sehingga kita membutuhkan setidaknya kira-kira \log_{2}4^{n} = 2n bit untuk menyalinnya. Oleh sebab itu sebuah pohon biner ringkas hanya membutuhkan 2 bit setiap simpul.

Penyandian pohon n-er sebagai pohon biner

Sebuah contoh mengubah sebuah pohon n-er menjadi sebuah pohon biner
(((M N) H I) C D ((O) (P)) F (L))
Pencarian biner adalah sebuah algoritma logaritmik dan bekerja dalam waktu O(log n). Secara khusus, 1 + log_2N pengulangan yang diperlukan untuk menghasilkan jawaban. Hal ini dianggap lebih cepat dibandingkan sebuah pencarian linear. Pencarian biner dapat diimplementasikan dengan rekursi atau iterasi, seperti yang terlihat di atas, walaupun pada kebanyakan bahasa pemrograman akan lebih elegan bila dinyatakan secara rekursif.

Contoh


Penerapan pada teori kompleksitas



Relasi dan fungsi proposisi

Sebuah relasi dapat dikaitkan dengan sebuah fungsi proposisi atau kalimat terbuka yang himpunan penyelesaiannya tidak lain adalah relasi tersebut.

Relasi A×A

Relasi Refleksif

\forall_{a \in A}\quad (a,a) \in R
\forall_{a \in A}\quad a R a

Relasi Irefleksif

\forall_{a \in A}\quad (a,a) \notin R
\forall_{a \in A}\quad \lnot(a R a)

Relasi Simetrik

\forall_{a, b \in A}\quad (a,b) \in R \rightarrow (b,a) \in R
\forall_{a, b \in A}\quad a R b \rightarrow b R a

Relasi Anti-simetrik

\forall_{a, b \in A}\quad a \neq b \rightarrow ((a,b) \in R \rightarrow (b,a) \notin R)
\forall_{a, b \in A}\quad a \neq b \rightarrow (a R b \rightarrow \lnot (b R a))
\forall_{a, b \in A}\quad (a,b) \in R \wedge (b,a) \in R \rightarrow a=b
\forall_{a, b \in A}\quad a R b \wedge b R a \rightarrow a=b

Relasi Transitif

(a,b) \in R \wedge (b,c) \in R \rightarrow (a,c) \in R
\forall_{a, b, c \in A} {a R b \wedge b R c \rightarrow a R c}

Relasi khusus

Relasi Ekivalen

R_{AB} \subseteq A \times BOrde Parsial

Didalam dunia komputer kita mengenal empat jenis bilangan, yaitu bilang biner, oktal, desimal dan hexadesimal. Bilangan biner atau binary digit (bit) adalah bilangan yang terdiri dari 1 dan 0. Bilangan oktal terdiri dari 0,1,2,3,4,5,6 dan 7. Sedangkan bilangan desimal terdiri dari 0,1,2,3,4,5,6,7,8 dan 9. Dan bilangan hexadesimal terdiri dari 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F.
Biner Oktal Desimal Hexadesimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F



Konversi Antar Basis Bilangan
Sudah dikenal, dalam bahasa komputer terdapat empat basis bilangan. Keempat bilangan itu adalah
biner, oktal, desimal dan hexadesimal. Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari non-desimal ke desimal adalah:
1. Mengalikan bilangan dengan angka basis bilangannya.
2. Setiap angka yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya. Nilai pangkat selalu bertambah satu point.

Konversi Biner ke Oktal

Metode konversinya hampir sama. Cuma, karena pengelompokkannya berdasarkan 3 bit saja, maka hasilnya adalah: 1010 (2) = ...... (8) Solusi: Ambil tiga digit terbelakang dahulu. 010(2) = 2(8) Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya adalah: 12.

Konversi Biner ke Hexadesimal

Metode konversinya hampir sama dengan Biner ke Oktal. Namun pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya. Contoh: 11100011(2) = ...... (16) Solusi: kelompok bit paling kanan: 0011 = 3 kelompok bit berikutnya: 1110 = E Hasil konversinya adalah: E3(16)

Konversi Biner ke Desimal

Cara atau metode ini sedikit berbeda. Contoh: 10110(2) = ......(10) diuraikan menjadi: (1x24)+(0x23)+(1x22)+(1x21)+(0x20) = 16 + 0 + 4 + 2 + 0 = 22 Angka 2 dalam perkalian adalah basis biner-nya. Sedangkan pangkat yang berurut, menandakan pangkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.

Konversi Oktal ke Biner

Sebenarnya, untuk konversi basis ini, haruslah sedikit menghafal tabel konversi utama yang berada di halaman atas. Namun dapat dipelajari dengan mudah. Dan ambillah tiga biner saja. Contoh: 523(8) = ...... (2) Solusi: Dengan melihat tabel utama, didapat hasilnya adalah: 3 = 011 2 = 010 5 = 101 Pengurutan bilangan masih berdasarkan posisi satuan, puluhan dan ratusan. Hasil: 101010011(2)

Konversi Hexadesimal ke Biner

Metode dan caranya hampir serupa dengan konversi Oktal ke Biner. Hanya pengelompokkannya sebanyak dua bit. Seperti pada tabel utama. Contoh: 2A(16) = ......(2)
Solusi:
caranya: A=10
ditulis dari hasil akhir

hasil :1010
ditulis dari hasil akhir

hasil:010

jadi hasil dan penulisannya 0101010 sebagai catatan angka 0 diawal tidak perlu di tulis.

Konversi Desimal ke Hexadesimal

Ada cara dan metodenya, namun bagi sebagian orang masih terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu konversikan dari biner ke hexadesimal. Contoh: 75(10) = ......(16) Solusi: 75 dibagi 16 = 4 sisa 11 (11 = B). Dan hasil konversinya: 4B(16)

Konversi Hexadesimal ke Desimal

Caranya hampir sama seperti konversi dari biner ke desimal. Namun, bilangan basisnya adalah 16. Contoh: 4B(16) = ......(10) Solusi: Dengan patokan pada tabel utama, B dapat ditulis dengan nilai "11". (4x161)+(11x160) = 64 + 11 = 75(10)

Konversi Desimal ke Oktal

Caranya hampir sama dengan konversi desimal ke hexadesimal. Contoh: 25(10) = ......(8) Solusi: 25 dibagi 8 = 3 sisa 1. Hasilnya dapat ditulis: 31(8)
25 : 8 sisa 1 3 -------- 3 hasilnya adalah 31

Konversi Oktal ke Desimal

suprianto2006i@gmail.com
HTML Comment Box is loading comments...